

Department of Materials Science and Engineering

Alloying Elements Balázs Varbai, PhD, EWE/IWE

Materials Engineering BMEGEMTBGF1 2022 Fall semester

- Basic alloying elements
 - C primer alloying element in most of the steels and cast irons
 - Mn solid-solution strenghtening, deoxidizer, weak austenite promoting element
 - Si deoxidizer, ferrite promoting element
 - + Ni, Mo, Co, Cr, W, Cu
 - + Al, Ti, V, Zr, B, Ce, Ca, Nb microalloys
- Impurity elements
 - S brittleness, sulfides
 - P brittleness at high temperatures
 - O, H, N brittleness, ageing, gas porosities
 - + As, Sb, Se, Bi, Sn, Pb

The effects of carbon – quenched state

att

http://www.indianagroup.com/fabricated-steel-structures/

Steel structures

The effects of alloying elements on the properties of steel

- 1. Solubility \rightarrow ferrite or austenite producing elements
- 2. Non-equilibrium $\gamma \rightarrow \alpha$ transformation
- 3. Austenite grain growth
- 4. Softening during tempering
- 5. Embrittlement during tempering
- 6. Ductile-brittle transition temperature
- 7. Recrystallization's temperature

att 1. Does it dissolve in the steel?

Does not dissolve

- Produces inclusions, disadvantageous
- S, As, Pb...

Dissolves

- Dissolves better in ferrite ferrite promoting element
- Cr, Al, Si, W, Mo, V, Ti
- Dissolves better in austenite austenite promoting element
- Ni, Mn, C, N, Cu

Microstructure, C and alloy content

Ferrite promoting element

Austenite promoting element

Change of transformation's temperature

2. Effect of alloying elements on non-equilibrium transformation

- All alloying elements decreases the Ms and Mf temperatures, except Co and Al.
- The present of residual austenite increases.
 - Deep cooling if necessary
- The CCT curves are shifted to the right.
 - The critical cooling rate is decreasing.
- Hardenability, through hardening diameter increases.

• Importance of quenching: with quenching & tempering (allotropic transformation) the properties can be influenced in wide range.

Conditions

- Heating to the temperature of $A_3 + ~50^{\circ}C$
- Keeping at constant temperature till material is fully austenitized
- Cooling faster than the critical cooling rate
- Practical condition: C > 0.2%

Hardenability

The maximal diameter of a bar, which can be quenched to contain 50 % of martensite.

Hardenability

The maximal diameter of a bar, which can be quenched to contain 50 % of martensite.

The effects of alloying elements on hardenability

att Application of Jominy test results

- Verification of material
 - Hardness according to the standards
- Technology information
 - Maximal/minimal hardness by quenching
 - Hardness distribution in the cross section

3. The effect of alloying on the austenite grain growth

- Mn, Si and B increases the susceptibility to grain coarsening
- Grain refining effect: Ti, V, Nb, Al, Zr
 - Producing fine uniformly distributed nitro-carbides on the grain boundaries, what decreases the boundary migration.
- Other alloying elements have no significant effect of grain coarsening.

3. The effect of alloying on the austenite grain growth

4. The effect alloying on softening during tempering

5. The effect of alloying on the embrittlement during tempering

650

Temperature (°C)

- Cr, Mn causes brittleness if slowly cooled at 500-650 °C
- Reason: Enrichment of carbides, nitrides, phosphides at grain boundaries
- P makes it worse.
- Ni together with Cr and Mn is disadvantageous
- 0.2...0.3 % Mo or 0.5-0.7 % W and fast cooling is advantageous.

- Ni alloying shifts the impact energy-temp. diagram to the left.
 - 1% Ni alloying ~20°C shift
- Grain refinement helps as well
 - Nb, V, Ti, Al, Zr, N microalloying ~40°C effect
- Impact energy-temp. diagram is shifted to right (makes it worse)
 - C, 0.1% C ~25°C
 - P, 0.1% P ~55°C
 - N, 0.01% N ~300°C (as solution)
 - O, 0.01% O ~200°C (as solution)

- The alloying increases the heat and creep resistance.
 - W, Mo ~110°C / at%
 - V ~55°C / at%
 - Cr ~30°C / at%

(b)

(C)

(d)

(a)

Thank you for your attention!